Long-term potentiation of synaptic transmission in the adult mouse insular cortex: multi-electrode array recordings.

The insular cortex (IC) is widely believed to be an important forebrain structure involved in cognitive and sensory processes such as memory and pain. However, little work has been performed at the cellular level to investigate the synaptic basis of IC-related brain functions. To bridge the gap, the present study was designed to characterize the basic synaptic mechanisms for insular long-term potentiation (LTP). Using a 64-channel recording system, we found that an enduring form of late-phase LTP (L-LTP) could be reliably recorded for at least 3 h in different layers of the IC slices following theta burst stimulation. The induction of insular LTP is protein synthesis-dependent and requires activation of both GluN2A and GluN2B subunits of the NMDA receptor, L-type voltage-gated calcium channels, and metabotropic glutamate receptor 1. The paired-pulse facilitation ratio was unaffected by insular L-LTP induction, and expression of insular L-LTP requires the recruitment of postsynaptic calcium-permeable AMPA receptors. Our results provide the first in vitro report of long-term multi-channel recordings of L-LTP in the IC from adult mice, and suggest its potential important roles in insular-related memory and chronic pain.