Glucose exposure pattern determines glucagon-like peptide 1 receptor expression and signaling through endoplasmic reticulum stress in rat insulinoma cells

Repeated fluctuation in plasma glucose levels, as well as chronic hyperglycemia, is an important phenomenon frequently observed in diabetic patients. Recently, several studies have reported that glucose fluctuation, compared to chronic hyperglycemia, mediates more adverse effects due to induced oxidative and/or endoplasmic reticulum (ER) stress. In type 2 diabetes, stimulation of insulin secretion by glucagon-like peptide-1 (GLP-1) has been found to be reduced, and the results of recent studies have shown that the expression of the GLP-1 receptor (GLP-1R) is reduced by chronic hyperglycemia. However, GLP-1R signaling in glucose fluctuation has not been elucidated clearly. In this study, we hypothesized that intermittent high glucose (IHG) conditions also reduced GLP-1-mediated cellular signaling via reduction in GLP-1R expression. To evaluate this hypothesis, rat insulinoma cells (INS-1) were exposed for 72 h to either sustained high glucose (SHG) conditions (30 mM glucose) or IHG conditions (11 and 30 mM glucose, alternating every 12 h). In comparison to both the SHG and control groups, IHG conditions induced a more significant impairment of insulin release and calcium influx in response to 1 nM GLP-1 treatment. In addition, the activity of caspase 3/7 as well as the gene expression of binding protein (Bip) and C/EBP homologous protein (CHOP), molecular markers of ER stress, was significantly higher in IHG-treated cells than in SHG-treated cells. Interestingly, the expression level of GLP-1R was significantly lower under IHG conditions than under SHG conditions. Collectively, these findings indicated that glucose fluctuation reduces GLP-1R expression through ER stress more profoundly than sustained hyperglycemia, which may contribute to the diminished response of GLP-1.