Alternative Splicing of gar-1, a Caenorhabditis elegans G-Protein-Linked Acetylcholine Receptor Gene

Yang-Seo Park,†1 Yong-Seok Lee,†1 Nam Jeong Cho,*2 and Bong-Kiun Kaang†2

*School of Life Sciences, Chungbuk National University, Cheongju, Korea; and †Molecular Neurobiology Laboratory, Institute of Molecular Biology and Genetics, Department of Biology, Seoul National University, Seoul, Korea

Received December 20, 1999

We have recently identified a gene, designated gar-1, coding for a novel form of G-protein-linked acetylcholine (ACh) receptor in Caenorhabditis elegans. Although this receptor is most closely related to muscarinic ACh receptors (mAChRs), electrophysiological analyses have shown that ligand binding specificity of the receptor is distinct from that of mAChRs. Here we report that three receptor isoforms are generated by alternative splicing of the gar-1 transcript. These receptor isoforms differ only in the third intracellular loop that is considered to be important for G protein coupling. The three splice variants, when expressed in Xenopus oocyte, displayed similar pharmacological profiles and signaling activities. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis showed that the three gar-1 mRNAs are present at all developmental stages examined. The results in this study provide evidence that alternative splicing is involved in promoting molecular diversity of G-protein-linked ACh receptors.

Key Words: gar-1; G-protein-linked acetylcholine receptor; alternative splicing; Caenorhabditis elegans

Acetylcholine (ACh), a major neurotransmitter in the nervous system, exerts its effects through two types of receptors, nicotinic ACh receptor and muscarinic ACh receptor (mAChR). Nicotinic ACh receptors are cation channels, while mAChRs are G-protein-linked receptors that have seven transmembrane domains. To date, five mAChR subtypes (m1–m5) have been identified in mammals (1, 2). The m1, m3, and m5 subtypes are known to preferentially activate phospholipase C, while the m2 and m4 subtypes preferentially inhibit adenyl cyclase (3, 4). These receptor subtypes share a high degree of amino acid sequence similarity, except for the third intracellular loop (i3 loop). This highly variable i3 loop is believed to determine specificity for G protein coupling (5).

Recently, we reported the isolation of the gar-1 gene that codes for a novel form of G-protein-linked ACh receptor in the nematode Caenorhabditis elegans (C. elegans) (6). This GAR-1 receptor is most similar to but pharmacologically different from mAChRs. Electrophysiological studies have shown that muscarinic antagonists, such as scopolamine and pirenzepine, did not effectively inhibit the ACh-induced activation of the GAR-1 receptor and a muscarinic agonist, oxotremorine, failed to activate the receptor (6). In the present study we show that alternative splicing of the gar-1 gene produces three functional receptor isoforms that differ only in the i3 loop region.

MATERIALS AND METHODS

Isolation of three splice variants of gar-1. Reverse transcriptase-polymerase chain reaction (RT-PCR) was performed using the RNA PCR kit (Takara) following the procedures recommended by the manufacturer. PCR primers used were described (6). PCR products were ligated into pBluescript (Stratagene) and the nucleotide sequences of the clones were determined using the Cy5 AutoRead sequencing kit and ALFexpress DNA sequencer (Pharmacia).

Electrophysiology of receptor isoforms expressed in Xenopus oocytes. Preparation and injection of cRNAs encoding GAR-1a, GAR-1b, GAR-1c, pig m2, and G-protein-gated inwardly rectifying K+ channel (GIRK1) into oocytes of Xenopus laevis was carried out as described in Lee et al. (6). The details of perfusion, drug application, and voltage-clamping experiments were also described in Lee et al. (6).

Preparation of stage-specific C. elegans RNAs and RT-PCR. Stage-specific C. elegans RNAs were prepared as described previously (7). Each stage-specific RNA (1 μg) was reverse transcribed in a total volume of 10 μl using the 1st strand DNA synthesis kit (Boehringer Mannheim) according to the manufacturer’s instructions. For PCR, 5 μl RT reaction mix was added to a 20 μl solution containing 1.875 mM MgCl2, 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 0.25 μM forward primer (MF-i3), 0.25 μM reverse primer (MR-i3), and 0.625 U Taq polymerase (Takara). Conditions for PCR were as follows: an initial denaturation at 94°C for 2 min, 30 cycles of amplification (30 s at 94°C, 30 s at 55°C, and
2 min at 72°C), and a final extension at 72°C for 10 min. PCR primers used were: MF-i3, 5'-CGTGAATTCAAGGGTATTCATCAAGCA-3'; MR-i3, 5'-CGGGAATTCTGTTCTGAATGCTTTATGAGC-3' (EcoRI site created is underlined).

RESULTS

We have previously isolated and characterized a cDNA encoding GAR-1, a C. elegans G-protein-linked ACh receptor (6). The gar-1 gene was shown to contain 16 introns in the coding region, suggesting a possibility of alternative splicing. To test this possibility, we performed RT-PCR experiments using primers designed to span various parts of the coding region. When we used a primer pair flanking the i3 loop, we observed three PCR products that hybridized to the gar-1 gene. This suggested to us that gar-1 encodes at least three alternatively spliced transcripts.

To determine the molecular details of the alternative splicing in the gar-1 gene, we isolated RT-PCR products and analyzed them by restriction enzyme mapping and DNA sequencing. Three distinct cDNAs were obtained and named, from the longest, gar-1a, gar-1b, and gar-1c. GAR-1a, GAR-1b, and GAR-1c are predicted to have 713, 682, and 622 amino acids, respectively. GAR-1b corresponds to the receptor that we described previously (6). The three GAR-1 isoforms differ only in the i3 loop region. GAR-1a contains an insertion of 31 amino acids in the i3 loop compared with GAR-1b (Fig. 1). GAR-1c is identical to GAR-1b except for a deletion of 60 amino acids and a substitution of one amino acid in the i3 loop, Glu\(^{502}\) for Asp (Fig. 1).

Comparison of the cDNAs with the corresponding genomic sequence revealed an additional exon (exon 9) that was not identified in the previous study (6) (Fig. 2). Furthermore, it showed that the three gar-1 transcripts result from alternative splicing of three exons (exons 9, 15, and 16) (Fig. 2). The 93-bp exon 9 is present only in gar-1a, while the 171-bp exon 15 is present in gar-1a and gar-1b. Exon 16 is present in all three gar-1 cDNAs, but the size of the exon in gar-1c (129 bp) is 9 bp shorter than the other two cDNAs (138 bp). This is due to alternative use of two splice acceptor sites at the 5' end of exon 16 (Fig. 2). In gar-1a and gar-1b, exon 15 is spliced to the first splice acceptor site in exon 16, whereas in gar-1c, exon 14 is spliced to the second splice acceptor site in exon 16, thus skipping exon 15 and omitting the first 9 bp of exon 16. This results in the conversion of the last amino acid of exon 14 from aspartate in gar-1a and gar-1b to glutamate in gar-1c.

Since the i3 loop is known to be critical for G protein coupling, the alternative splicing in this region might affect the coupling property of the receptor. To examine this possibility, we compared the coupling efficacy of the three GAR-1 isoforms by expressing in Xenopus oocytes each receptor isoform together with GIRK1 channel. As shown in Fig. 3, the GIRK1-mediated current was activated by ACh in the high K\(^+\) solution irrespective of the receptor isoforms (209.9 ± 39.8 nA,
n = 14 for GAR-1a; 220.7 ± 27.9 nA, n = 14 for GAR-1b; 369.2 ± 44.3 nA, n = 13 for GAR-1c). In control experiments, the same inward current was generated by pig m2 mAChR when the receptor was activated by ACh (319 ± 27.3 nA, n = 14). This GIRK current appears to be mediated by G\(_i\) protein, but not by G\(_o\) protein, because any of GAR-1a (n = 5), GAR-1b (n = 5), GAR-1c (n = 5), or pig m2 mAChR (n = 3) did not produce the transient Ca\(^{2+}\)-activated Cl\(^{-}\) current that is known to be activated by G\(_o\) or G\(_q\) protein. The three splice variants displayed similar dose-response curves upon ACh treatment (Fig. 4). This current was also produced by another agonist carbachol (1 \(\mu\)M), though to less amounts than by 1 \(\mu\)M ACh (46.6 ± 9.2\%, n = 5 for GAR-1a; 59.8 ± 7.8\%, n = 3 for GAR-1b; 52.4 ± 2.1\%, n = 4 for GAR-1c). However, another muscarinic agonist oxotremorine (1 \(\mu\)M) did not elicit the current from any receptor isoforms (n = 5 for GAR-1a; n = 3 for GAR-1b; n = 4 for GAR-1c). Together, these data show that the coupling efficacy and agonist specificity of the three receptor isoforms are largely similar.

We also examined the effects of antagonists (atropine, scopolamine, and pirenzepine) on ACh-induced GIRK currents that are produced by each receptor isoform and pig m2 mAChR (Fig. 3). Atropine (1 \(\mu\)M) inhibited the GIRK current by 36.1 ± 8.0\% (n = 10) for GAR-1a, 44.3 ± 5.2\% (n = 5) for GAR-1b, 40.9 ± 3.8\% (n = 10) for GAR-1c, and 95.8 ± 3.5\% (n = 5) for pig m2 mAChR. Scopolamine (1 \(\mu\)M) inhibited the current by 15.4 ± 4.0\% (n = 10) for GAR-1a, 30.7 ± 6.5\% (n = 5) for GAR-1b, 24.2 ± 4.4\% (n = 9) for GAR-1c, and 96.9 ± 1.9\% (n = 5) for pig m2 mAChR. Pirenzepine (1 \(\mu\)M) inhibited the current by 7.5 ± 3.7\% (n = 8) for GAR-1a, 15.1 ± 5.4\% (n = 4) for GAR-1b, 13.9 ± 2.7\% (n = 9) for GAR-1c, and 77.3 ± 6.0\% (n = 5) for pig m2 mAChR. These data indicate that each antagonist tested in this study inhibits the three receptor isoforms to a similar extent, but less effectively than mammalian mAChRs.

Previously we have shown that the gar-1 mRNA is present at all developmental stages (6). To examine the expression pattern of the three gar-1 mRNAs, we prepared stage-specific RNAs and performed RT-PCR with primers flanking the i3 loop region. Three PCR products of expected sizes were found at all developmental stages (Fig. 5). We observed consistently that gar-1b is the most abundant while gar-1c is the least abundant species and that overall gar-1 transcripts at the early larval stages are more abundant than those at the adult stage.

DISCUSSION

Alternative splicing has been observed in many members of the G-protein-linked receptor superfamily. These members include prostaglandin EP3 receptor (8), pituitary adenylyl cyclase-activating polypeptide type-1 receptor (9), and calcitonin receptor (10, 11). Alternative splicing of these receptor genes produces multiple receptor isoforms with different functions, thereby increasing receptor diversity. Here we demonstrated that three functional C. elegans G-protein-linked ACh receptor isoforms are generated by alternative splicing. No other G-protein-linked ACh receptor genes have been shown to
be alternatively spliced. In fact, no intron has been found in the coding region of mammalian G-protein-linked ACh receptor (that is, mAChR) genes. Although Drosophila mAChR gene has been reported to contain three introns in the coding region (12), the existence of splice variants has not been known. Collectively, our data indicate that alternative splicing is a mechanism to increase molecular diversity of G-protein-linked ACh receptors in *C. elegans*.

Electrophysiological experiments using the Xenopus oocyte expression system showed that the three GAR-1 isoforms are coupled to the activation of GIRK1 channel. The receptor isoforms appeared functionally similar with respect to ligand specificity (Fig. 3) and dose-response curve (Fig. 4). The physiological significance of alternative splicing of the gar-1 gene is not clear yet.

FIG. 3. Functional expression of GAR-1 isoforms in Xenopus oocytes and their antagonist specificity. Oocytes were injected with cRNA (2.5 ng each) for GAR-1a (A1, A2, A3), GAR-1b (B1, B2, B3), GAR-1c (C1, C2, C3), or pig m2 mAChR (D1, D2, D3) together with GIRK1 cRNA (2.5 ng). All the current traces were recorded at a holding potential of −70 mV in two-electrode voltage-clamp. The presence of drugs in the bathing solution is indicated by bars. Perfusion of ND96 (ND) and high K⁺ (hK) solutions and drug applications were done as described in Lee et al. (6). To evoke the GIRK1-mediated inward current, 1 μM acetylcholine (ACh) was applied. A1, B1, C1, D1, atropine (1 μM); A2, B2, C2, D2, scopolamine (1 μM); A3, B3, C3, D3, pirenzepine (1 μM). The scale bar indicates 100 nA and 4 min for A3, B3, and C3 and 50 nA and 2 min for all the other traces.

FIG. 4. Dose-response curves for three GAR-1 isoforms. The amplitude of the peak current was measured and normalized to the maximum value obtained for each isoform. Each data point in the curves consists of recordings from 3 to 6 oocytes.
It is possible that the three receptor isoforms may interact with distinct G proteins since the three isoforms differ only in the i3 loop region that is thought to be critical for determining G protein specificity. Actually this has been seen in the case of D2 dopamine receptor, another well-known G-protein-linked neurotransmitter receptor. Two alternatively spliced D2 receptor isoforms, that are identical except for an insertion of 29 amino acids in the i3 loop (13, 14), were reported to have differential specificity to G proteins (15). It is also possible that sequestration of the GAR-1 isoforms may be different as the i3 loop has been implicated in receptor sequestration (16). In fact, the extent of sequestration between the two D2 receptor isoforms was reported to be different upon agonist treatment (17).

In *C. elegans* two additional genes, designated *gar-2* and *gar-3*, code for G-protein-linked ACh receptors. *GAR-3*, when expressed in Chinese hamster ovary cells, has been shown to stimulate phosphatidylinositol metabolism and exhibit virtually identical pharmacological profile to mammalian mAChRs (7). *GAR-2*, which is encoded by a gene located on cosmid F47D12, activates GIRK1 channel in response to ACh and displays pharmacological properties distinct from those of mAChRs (manuscript in preparation). Our preliminary data indicate the existence of three *gar-2* and two *gar-3* splice variants, suggesting that alternative splicing serves as a general mechanism for diversifying G-protein-linked ACh receptors in the nematode.